
www.manaraa.com

���������	
���
�	��
��
������	

Supporting E-Commerce
in Wireless Networks

RADEK VINGRALEK

October 2001

Copyright ©2001 InterTrust Technologies Corporation. All rights reserved.

InterTrust Technologies Corporation
4750 Patrick Henry Drive
Santa Clara, CA 95054
Tel: +1.408.855.0100
Fax: +1.408.855.0136

www.manaraa.com

Supporting E-Commerce in Wireless Networks

Radek Vingralek

STAR Lab, InterTrust Technologies Corporation
4750 Patrick Henry Drive
Santa Clara, CA 95054

rvingral@intertrust.com

Abstract. We describe a set of services that are either necessary or
desirable for support of e-commerce transactions in wireless networks.
We focus on e-commerce transactions that involve digitally represented
information, such as audio or video files, computer software or text docu-
ments. For each proposed service we first explain its utility independently
of the network connectivity and then we emphasize its benefits in wireless
networks, when applicable.

1 Introduction

We describe a set of services in a wireless network infrastructure that are either
necessary or desirable for support of e-commerce transactions. By e-commerce
transactions we mean business transactions that are realized over a computer
network. E-commerce transactions are specified by contracts, which define both
the obligations and the rights of the buyer. For example, a contract may oblige the
buyer to pay a fee before rendering a video file and give her a right to render the
video file until an expiration date. We concentrate in this paper on e-commerce
transactions that involve sale of digitally represented information, such as audio
or video files, computer software or text documents. We call such e-commerce
transactions digital e-commerce transactions (DETs). The enforcement of rights
is particularly important for DETs, because digitally represented information
can be easily copied and re-distributed. In the above example, the user may not
be granted rights to create persistent copies of the video file. The systems that
support DETs are typically called Digital Rights Management (DRM) systems.

The infrastructure services discussed in this paper do not depend on the type
of communication network used to connect the buyers and the sellers. However,
we will argue that the requirements are particularly important in wireless net-
works, which are distinguished by

– Low bandwidth. Most commercial wireless networks provide bandwidth in
the range of 10 to 100 kbps, with most existing networks in the lower end of
the spectrum and newer standards aiming at the higher end of the spectrum.
The achieved bandwidth is further reduced by relatively high error rates.

– High latency. Although many wireless networks have similar latencies to
fixed networks on the same scale, some have significantly higher latencies.

www.manaraa.com

For example, the geosynchronous satellite networks have round trip latency
of approximately 250 ms.

– Intermittent connectivity. Disconnections are more frequent in wireless net-
works than in fixed networks. For example, users of a cellular network may
move to areas not covered by the network.

In the rest of this paper we describe the benefits of three services for sup-
port of DETs: 1) distributed trusted execution environment, 2) decentralized
certificate infrastructure and 3) standardized contract languages.

2 Distributed Trusted Execution Environment

The Distributed Trusted Execution Environment (DTEE) ensures secrecy and
integrity of a process state across computers in a network. In particular, the
DTEE must protect the process state against a malicious disclosure or modifica-
tion. DETs require process state integrity to guarantee that all obligations of a
contract are satisfied and that the resulting rights are enforced on buyers’ com-
puters. DETs also require process state secrecy to prevent reverse-engineering
and subsequent circumvention of the DTEE.

Consider again the video-on-demand system with a contract that obliges
buyers to pay a fixed free before rendering the content and in exchange gives the
buyer a right to play the content unlimited number of times prior to an expiry
date. The integrity of the contract process state provided by the DTEE ensures
that the buyer can get the video content only after paying the correct fee and
that she cannot render the video after the expiry date. Secrecy of the contract
process state provided by the DTEE protects sensitive data (such as keys used
for encryption of the video) from disclosure to the buyer (the buyer may use the
key to circumvent the DTEE and obtain the video for free).

DTEE’s goals are complementary to the systems that enable secure execution
of mobile code (such as Java applets). The Java virtual machine protects the
integrity of the host system from a possibly hostile mobile code. The DTEE, on
the other hand, protects the integrity mobile code state from a possibly hostile
host system.

The DTEE must also ensure secrecy and integrity of operating system ser-
vices used by the protected processes. A typical contract process may require
access to persistent storage, time and location services. Trusted storage ensures
that each contract process is given a private persistent storage that cannot be
read by other processes. It may not be possible to prevent modification of the
storage (ultimately, a buyer can destroy the storage device that is under her
physical control), but the DTEE should detect such modification prior to read-
ing from the storage. Contract processes may use persistent storage to store the
values of counters. For example, a contract may allow a free rendition of a video
for a limited number of times and require payment afterwards. Trusted time
ensures that contract processes are given a reasonably accurate estimate of the
current time or the time elapsed since a specific event. In some cases, the service
may provide only a lower bound. For example, a contract may allow rendition of

www.manaraa.com

a video until an expiry date. Trusted location gives to every process a reasonably
accurate estimate of the current location of the hosting computer. For example,
a video may be available at different prices depending on the country in which
it is purchased.

2.1 DTEE Benefits

The DTEE is particularly useful for enabling DTEs in wireless networks, as
demonstrated by the following examples:

Data prefetching. Wireless networks have a low bandwidth. Consequently, it
is important to prefetch large data prior to their use. Some of the content
files may be quite large, such as audio or video files. The content seller may
distribute the content prior to its purchase (e.g., when the device is connected
to a fast wired network or using a CD) and rely on the trusted storage to
protect the content from consumption by the user until payment.

Message batching. Since communication is expensive in wireless networks, it
is important to reduce also the overall number of messages. By using the
trusted storage of the DTEE, contract processes may avoid communication
with a remote computer during a DET. The payment in the above example
can proceed without any message exchange with the seller’s computer by
keeping an audit trail of the transaction in the trusted storage of the buyer’s
device. The audit trail is periodically cleared with the payment infrastructure
(e.g., the seller’s computer) to limit the damage resulting from a loss of
the buyer’s computer and to free resources in the buyer’s trusted storage.
Periodic clearing also results in aggregation of several micropayments, which
can reduce the per-transaction cost.

Fault tolerance. Since mobile computers may move to areas outside of the
range of the wireless network, it is important that the computers can con-
duct (some) DETs even when disconnected from the network. In the above
example, a buyer could purchase content without any message exchange.
Therefore, the transaction could proceed even when the buyer’s computer is
disconnected.

The DTEE also enables new business models. Currently software is sold
outright because it is difficult to control its usage once it has been transferred
to the buyer’s computer. The DTEE allows to replace the outright sale with a
metered sale with a free preview for a limited number of times. Similarly, software
can be leased for a limited period of time. Using a trusted location, software can
be sold using different prices and business models in different countries or regions
(which may be an effective way to combat software piracy).

Although most of the above examples utilize the DTEE to protect seller’s
interests on the buyer’s computers, the DTEE can be also used in the reverse
direction to protect buyer’s privacy on the seller’s computer. For example, a
contract may provide a lower price in exchange for personal data. The buyer may
bind the personal data with a (default) privacy contract, which would disallow
redistribution of the personal data by the seller.

www.manaraa.com

2.2 DTEE Implementation

Implementing the DTEE on general-purpose computers is difficult because it
requires enforcing security policies on remote computers, which may be under
control of an adversary. For example, a hostile user may load an emulator on her
machine and gain a complete control over the execution of contract processes,
which violates both the secrecy and integrity requirements on the DTEE.

However, unlike general-purpose computers, many wireless computers (such
as high-end cell phones) are highly specialized devices that do not load user-
provided programs. Consequently, the TDEE is vulnerable only to attacks on
the hardware, which are more time-consuming than attacks on software [13] and
the exploits are harder to distribute than software patches. The hardware can
be further hardened against certain types of attacks using a single die systems
in tamper-proof casing (e.g., smart-cards) [16], bus encryption [9] or tamper-
resistant packaging coupled with memory zeroization on tamper detection [15].

On platforms that load user-provided programs (such as PDA’s) the operat-
ing system must either load only programs from trusted sources and after their
integrity has been validated [3, 15] or sandbox the untrusted processes [11, 12, 7].
Alternatively, the DTEE may settle for a weaker protection based on software
obfuscation techniques [4, 8].

Trusted storage can be implemented on top of untrusted storage (e.g., a
removable SmartMedia flash RAM card) using a short (e.g., 128 bit) secret
memory, which can be read only by the contract process, and an one-way 32 bit
counter, which cannot be decremented [14]. Trusted time can be implemented
either by querying an authenticated NTP (Network Time Protocol) server or by
using the trusted storage and a watch-dog timer, available on most embedded
processors.

The protection provided by the DTEE does not have to be (and cannot be)
perfect. It is sufficient to make the cost of a successful attack higher than the
cost for the products purchased via the e-commerce infrastructure.

3 Decentralized Certificate Infrastructure

Since DETs involve interactions of multiple entities (principals) that may not
know each other, it is important that the DRM system can use a certificate

infrastructure, which provides means for authentication and authorization of all
principals. Authentication establishes the validity of a public key representing
a principal participating in a DET. Authorization establishes the capabilities
of the principal owning the public key. Grants of capabilities to principals are
expressed as certificates, which are signed with one or more private keys of the
principals granting the capability.

In DETs, the capabilities involve access to digital content, clearing financial
transactions, performing transaction escrow, and delegating capabilities to other
entities (for example, a content provider may delegate transaction clearing capa-
bilities to a partnering bank). Moreover, certificates may also attest an existence

www.manaraa.com

(and quality) of a Trusted Execution Environment (TEE) on a given computer.
The integrity of the DTEE can be maintained by revoking certificates of TEEs
that are either known or suspected to be compromised. Similarly, a seller may
require that the buyer’s TEE has certain quality before it can participate in a
contract execution.

Typical DRM systems involve a large number of principals, which can dy-
namically change. The principals may be authenticated by multiple authorities
(e.g., a buyer may be authenticated by her ISP and a seller may be authenticated
by one of commercial Certification Authorities). Moreover, principals may have
a different degree of trust in authentication performed by other principals (e.g.,
principal A may trust authentication of principal B, but not C, while principal
B may trust C, but not A). Therefore, the certificate infrastructure must be
decentralized with a capability to delegate both authentication and authoriza-
tion to other principals. In order to authorize principal A to perform action z,
principal B must prove from the certificates it owns and the certificates supplied
by principal A that the request conforms with principal B’s local security pol-
icy. Several decentralized certificate infrastructures have been either specified or
implemented as prototypes [6, 10, 5].

4 Standardized Contract Languages

There are several initiatives to standardize languages for expressing contracts
[1, 2]. We see several benefits of adopting such a standard:

Multiple vendor DRM systems can interoperate. There are several aspects
of interoperability: A buyer and seller can use different DRM systems. A seller
can redistribute content from another seller (using a different DRM system) by
augmenting the original contract. For example, an ISP can re-distribute videos
as a value-added service. Similarly, a seller can embed content in a newly cre-
ated content by including the contract of the embedded content in the newly
created contract. For example, a news report may include photos from freelance
reporters.

Buyers can find new content by querying on the terms of a contract. For
example, a buyer may request a video that contains “Barney” in its title, costs
no more than $2 and can be leased for at least one month. Moreover, the buyer
may indicate that she is willing to provide restricted personal information (ex-
pressed using the contract language) in exchange for a free access. The DRM
system evaluates the query and either returns the result set to the buyer for
selection and/or transaction approval, or automatically purchases the best (or
first) match.

Executing DETs as queries has additional benefits, particularly in wireless
networks:

Asynchronous transaction execution. The entire transaction can be exe-
cuted automatically with no involvement of the buyer (perhaps, except of
the final approval). Consequently, the buyer does not have to manually search
for a suitable product and execute individual steps of the contract, which

www.manaraa.com

may lead to significant delays in wireless networks. For example, in the search
step the user may need to download descriptions of different products that
may be represented as large graphical objects.

Transaction shipping. The query can be shipped for evaluation to the sellers’
computers, which can further reduce the volume of data that is sent across
the wireless network (in fact, the decision whether to ship the query to the
data or the data to the query can be cost-based, but we assume that for
most DETs the former is better).

References

1. The open digital rights language initiative. odrl.net, September 2001.
2. Xrml. www.xrml.org, September 2001.
3. W. Arbaugh, D. Farber, and J. Smith. A secure and reliable bootstrap architecture.

In Proceedings of the IEEE Symposium on Security and Privacy, 1997. Oakland,
CA.

4. D. Aucsmith. Tamper resistant software: an implementation. In Proc. International

Workshop on Information Hiding, 1996. Cambridge, UK.
5. M. Blaze, J. Feigenbaum, J. Ionnidis, and A. Keromytis. The KeyNote trust

management system, version 2 (rfc 2704), 1999.
6. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Pro-

ceedings of the IEEE Symposium on Security and Privacy, 1996. Oakland, CA.
7. F. Chang, A. Itzkovitz, and V. Karamcheti. User-level resource-constrained sand-

boxing. In Proceedings of the 4th USENIX Windows Systems Symposium, 2000.
Seattle, WA.

8. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proceedings of the ACM Conference on Principles

of Programming Languages, 1998. San Diego, CA.
9. Dallas Semiconductor. DS5002FP Secure Microprocessor Chip, July 2001.

10. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
certificate theory (rfc 2693). ftp://ftp.isi.edu/in-notes/rfc2693.txt, 1999.

11. I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A secure environment for
untrusted helper applications. In Proceedings of the 6th USENIX Security Sympo-

sium, 1996. San Jose, CA.
12. G. Hunt and D. Brubacher. Detours: Binary interception of Win32 functions. In

Proceedings of the 3rd USENIX Windows NT Symposium, 1999. Seattle, WA.
13. O. Kommerling and M. Kuhn. Design principles for tamper-resistant smartcard

processors. In Proceedings of the USENIX Workshop on Smartcard Technology,
1999.

14. U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database
system on untrusted storage. In Proceedings of the 4th Symposium on Operating

Systems Design and Implementation, 2000. San Diego, CA.
15. S. Smith, E. Palmer, and S. Weingart. Using a high-performance, programmable

secure coprocessor. In Proceedings of the International Conference on Financial

Cryptography, 1998. Anguilla, British West Indies.
16. J. Tual. MASSC: A generic architecture for multiapplication smart cards. IEEE

Micro, 19, 1999.

